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Abstract 

Despite a common EU directive on energy efficiency in residential buildings, levels of energy efficiency differ vastly across  

European countries. This article analyses these differences and investigates the effectiveness of different energy efficiency policies in 

place in those countries. We firstly use panel data to explain average yearly energy consumption per dwelling and country by 

observable characteristics such as climatic conditions, energy prices, income, and floor area. We then use the unexplained variation 

by sorting between-country differences as well as plotting within-country changes over time to identify better performing countries. 

These countries are analysed qualitatively in a second step. We conduct expert interviews and examine the legal rules regarding 

building energy efficiency. Based on our exploratory analysis we generate a number of hypotheses. First, we suggest that regulatory 

standards, in conjunction with increased construction activity, can be effective in the long run. Second, the results suggest that carbon 

taxation represents an effective means for energy efficiency.  
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1. Introduction 

As a means of addressing climate change, energy efficiency3 of residential buildings is becoming increasingly 

singled out by EU environmental policy. Residential buildings are particularly important to focus on, since, according to 

Eurostat, they account for around 25% of total energy consumption as well as around 20% of greenhouse gas emissions. 

EU directives such as the directives 2002/91/EC, 2010/31/EU, and 2012/27/EU of the European Parliament and the 

Council set minimum standards for all countries of the European Union to improve energy efficiency in residential 

buildings. More importantly, specific goals are set for the years 2020 and 2030 (20% and 30% reduction in energy 

consumption compared to projections).  

While there are common goals, different governments employ different tools in order to reach these target values. 

Moreover, energy efficiency levels differ vastly across European countries (Filippini et al. 2014). This gives us the 

opportunity to study the effectiveness of various tools for increasing energy efficiency levels.  

Former research has primarily focused on quantifying energy efficiency policies (Ó Broin et al (2015), Filippini et al. 

(2014)) or focused on the evaluation of only one energy policy instrument such as regulations (Levinson 2014; 

Levinson 2016)). This, however, went along with a number of limitations such as homogenizing heterogeneous policy 

instruments, or excluding important policy instrument which are not quantifiable.  

Therefore, we take on a different approach in order explore which factors of energy policy are effective and are able 

to explain differences in energy efficiency across European countries. By taking on an exploratory and mixed methods 

approach we shed some light on parts of energy efficiency policies which have earlier been neglected, such as district 

heating and carbon taxation. 

Our analysis is divided into two parts, namely a quantitative and an exploratory qualitative part. In a first step, we 

use panel data techniques (LSDV) in order to explain residential building energy consumption (from 2000 till 2015) of 

European countries by a number of observable characteristics. Country dummy coefficients can be regarded as 

unexplained between-country-deviations from expected consumption levels (where the expectation is contingent on 

observable characteristics). In a subsequent qualitative analysis, based on the results of our quantitative analysis, we 

investigate energy efficiency policies (with respect to residential buildings) in selected countries by conducting expert 

interviews in these countries and examining official policy documents as well as statistics.  

Besides evidence on the effectiveness of regulatory (building efficiency) standards, our exploratory hypothesis 

suggests the hypothesis that energy taxes and carbon taxation represent effective means of energy conservation.  

2. Energy Efficiency in Residential Buildings 

Literature on the effectiveness of energy policy instruments on energy efficiency is rather scarce. Differences in 

climatic conditions, levels of income and living area, etc. preclude any simple cross country comparison of energy 

consumption in the building sector. Some studies circumvent this problem by comparing regulatory standards of new 

buildings (Schild et. al, 2010) although this also greatly reduces the scope by excluding the great amount of existing 

buildings which make up most of the overall energy demand. Alternatively one may control for observable 

characteristics that are known to influence consumption levels. There are only two major studies which analyze and 

compare the effectiveness of energy policies on energy efficiency in residential buildings across different countries, 

namely by Filippini et al. (2014) and Ó Broin et al. (2015). Therefore, we will focus mainly on these two studies and 

explain their approaches fairly detailed since our further analysis is based on these two studies. 

The empirical analysis by Filipini et al. (2014) combines an energy demand model which includes climatic 

conditions, income levels and living area, with a so called frontier analysis. The authors generate six quantitative policy 

indicators within three main categories. There are (i) regulatory standards (e.g. u-values), (ii) financial/ fiscal incentives, 

and (iii) informative measures based on the cross country database on energy policies (MURE). This approach has two 

major limitations: firstly, quite distinct policy measures are treated as if they were identical. To give an example, 

subsidies for specific types of technologies and broader incentives such as energy taxation are put together in category 

(ii). Secondly, by simply counting the number of policies there are no weights which signify the relative impact of these 

measures (i.e. the indicator is equal to 1 if there are two or more regulatory standards in place that prescribe rules for 

buildings or heating within a country, and 0 otherwise). Many different kinds of standards fall within the precinct of this 

category. The authors recognize this problem when they state „This is arguably a relatively simplistic approach because 

[..] the measures are heterogeneous; hence, counting the number of measures introduced in each group could be 

imprecise“ (Filippini et al., 2014, 78). For example, Filippini et al (2014, 76, table I) list Sweden as one of the countries 

with relatively few regulatory standards. But as we will show below, the regulatory standards in Sweden should be seen 

as the strictest across Europe. In summary, the results suggest that regulatory standards and financial/ fiscal incentives 

                                                        
3 In this paper the term energy efficiency improvement is defined as the reduction in energy consumption whilst holding the temperature level 

constant. Since we control for prices, income (GDP per capita) as well as average size of apartments and other relevant variables which might affect 

energy consumption, lower energy consumption indicates higher energy efficiency in a country. 
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affect energy consumption, whereas informative measures do not. These findings are in accordance with Feser & Runst 

(2016) who investigate why subsidized information campaigns for home owners do not seem to be effective in 

increasing the rate of energetic retrofits (and point toward lacking profitability and asymmetric information as reasons). 

Ó Broin et al. (2015) pursue a similar strategy as Filipini et al. (2014) but introduce a stronger quantitative element in 

generating the policy-indicators. The authors use a panel data set of 15 European countries for the time period of 1990 

till 2010. They estimate the determinants of heating energy consumption. Instead of simply counting the number of 

different types of policies (Filipini et al., 2014; also Bertoldi and Mosconi, 2015), Ó Broin et al. (2015) generate what 

they call a semi-quantitative index, whereby they apply different impact-weights to different policies in order to include 

a measure of effectiveness (and the effect size) for different policies. The policies recorded in the MURE-database are 

therefore divided into low, medium and high impact, which correspond to energy savings of 0.1%, 0.1-0.5%, and more 

than 0.5%. Accordingly, each policy is coded as 1, 10 or 20. The semi-quantitative approach thereby transforms a more 

or less informal expert consensus on the effectiveness of a policy by mapping tem onto the numbers 1, 10, or 20. The 

resulting semi-quantitative policy indicators also enter the empirical specification as lags (t-1 until t-7) in order to 

capture medium run effects. There are three policy categories – financial, informative and regulatory. The authors show 

that regulatory policies impart the greatest effect on energy consumption. In contrast to Filipini et al. (2014), the results 

indicate a seven year delay in the effectiveness of informative measures. Information effect sizes are also relatively 

small. The authors suggest increased implementation of regulatory measures. 

A semi-quantitative approach necessarily emphasizes similarities between heterogeneous policies in order to create a 

feasible number of categories. To be sure, any process of quantification faces this challenge as the counting of entities 

(variable values) within constructed categories (variables) always entails some degree of artificially introduced 

homogenization. Another limitation of the study is the exclusion of certain policies (such as carbon-taxation) as they 

“would already be represented in the energy price time series” (Ó Broin et al., 2015, 220). Yet, the amount of collected 

energy and carbon-taxes does not necessarily correlate with the size of the tax rate. Individuals will adjust their behavior 

and substitute taxed sources (e.g. coal and oil) in favor of non-taxed or lightly taxed sources of energy. Thus, for 

countries in which energy and carbon-taxes have been in effect for many years (e.g. Sweden), the carbon-tax revenue 

underestimates the full impact of tax based energy policies as oil and coal are no longer in use. In other words, if people 

have already switched to renewable energy sources a high carbon-tax rate is not necessarily mirrored in a high energy 

price index. 

The studies discussed above (Filipini et al., 2014; Ó Broin et al., 2015) have made valuable contributions to the 

literature and it is noteworthy that regulatory measures impart effects on building energy consumption in both of these 

papers. We base our analysis on the contribution of these two studies and extend their approaches in order to solve some 

methodical limitations and obtain more precise results. 

3. Quantitative Analysis 

We employ a mixed-methods approach. Our quantitative analysis serves the purpose of explaining energy 

consumption by country and year by observable characteristics. We pay close attention to country specific effects as 

they can indicate a higher (or lower) level of energy consumption than what we would expect from the vector of 

observable characteristics. We also plot the country specific residuals over time. Systematic changes over time may 

indicate improvements or decline in energy efficiency. We then build upon these quantitative insights by qualitatively 

investigating certain countries, which stand out due to their better-than-expected energy efficiency, in detail. These case 

studies identify likely (policy) causes for their high levels of energy efficiency or efficiency improvements.  

Having data of the 28 countries of the European Union and Norway for the years from 2000 – 2015, we use panel 

data methods. The mean energy use per dwelling4 by country and year (as tons of oil equivalent) represents the 

dependent variable in our empirical model which takes the following form: 

 

𝐸𝑛𝑒𝑟𝑔𝑦𝑖𝑡 = 𝛽0 + 𝛽1𝑋̅𝑖𝑡 + 𝛽2𝑊𝐴𝑃𝐼𝑡𝑎𝑥𝑖𝑡 + 𝛽3𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑖 + 𝛽4𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑖 + 𝛽5𝑐𝑜𝑢𝑛𝑡𝑟𝑦𝑖 + 𝛽6𝑦𝑒𝑎𝑟𝑡 + 𝜀𝑖𝑡  

 

In order to capture the country-specific effects a Least Squares (Country) Dummy Variable Model (LSDV) will be 

run. Therefore, a country dummy variable 𝑐𝑜𝑢𝑛𝑡𝑟𝑦𝑖 is included in the model controlling for time-invariant country-

fixed effects. These country dummies show whether a country consumed more or less energy than others after having 

controlled for country-specific conditions. Using a LSDV can also prevent endogeneity caused by omitted variables 

since it captures all country specific effects. However, in this case we expect that the country specific effects mainly 

capture public policy differences across countries. It has been shown that cross country analyses often suffer from 

omitted variable bias (Ranson et al., 2014). Both Filipini et al. (2014) and Ó Broin et al. (2015) include only a small set 

                                                        
4 Former studies have used consumption per square meter as their dependent variable. We use average consumption per dwelling instead and 

control for floor area since we believe that consumption only increases until a certain floor area is reached and decreases a fterwards. 
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of controls. Besides the LSDV approach, we consequently add a number of additional variables, represented by 𝑋̅, 

which plausibly affect energy consumption.  

The vector 𝑋̅ is composed of the following time-variant explanatory variables: 𝑊𝐴𝑃𝐼𝑡𝑎𝑥𝑖𝑡 is the weighted average 

price index which calculates the energy price according to the country’s specific energy mix and prices (including taxes 

and levies). Alternatively, we also used a net weighted average price index (excluding taxes and levies). However, due 

to a large number of missing values in the time-line and across countries, we did not include WAPInet in the model 

specifications.  

Furthermore, the median age of the population, mean floor area and GDP per capita are included. All three are 

expected to have a positive impact on energy use. Their squared terms are included as well since we do not expect 

further positive impact on energy use from a certain floor area or GDP per capita onwards. Share of homes that are 

owned (as opposed to being rented) is included in the model in order to test for the existence of the owner-tenant 

dilemma. Moreover, the share of apartments (as opposed to free standing houses) is an important explanatory variable 

as apartments are more energy efficient due to the lower number of outer walls. In order to control for climatic 

differences we use 𝐻𝐷𝐷𝑖𝑡 , 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑖  and 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑖 as additional variables. 𝐻𝐷𝐷𝑖𝑡 are heating degree days which is a 

proxy variable for the country’s specific climate, whereas 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 captures possible effects related to continental 

climates in eastern European countries. The thermal properties of the building stock depend on its age. Therefore, we 

use the share of newly constructed residential buildings each year in conjunction with the share of buildings after 1980 

in order to construct the variable 𝑝𝑜𝑠𝑡1980 for all years and all countries. We also included the country’s average 

household size as an explanatory variable since we expect higher energy consumption with increasing household size. 

However, the household size does not vary substantially across countries and neither within countries over time. 

Besides, the variable household size was not significant and the regression output did not change substantially after the 

inclusion of the variable. Only the variable floor area lost some significance which could mean that the variable floor 

area partially captures household size. Therefore, the variable household size was dropped from the model. Finally, 𝜀𝑖𝑡  

is the error term in this model. 

The results of a Breusch-Pagan Test showed that the model contains heteroscedastic residuals. As often observed in 

panel data, we also detect autocorrelation. This is due to the country specific effects which are not constant over time. 

Therefore, heteroscedasticity and autocorrelation robust standard errors are specified in both model specifications. 

Furthermore, energy prices are most likely affected by energy demand. In order to address this endogeneity problem 

Bigano et al. (2006) rely on lagged energy demand and Arellano-Bond dynamic panel-data estimations. Although a 

robustified Durbin-Wu-Hausman test on endogeneity led us to accept the null hypothesis of exogenous prices (WAPI 

tax), we nevertheless use an instrumental variable approach in order to safely rule out potential endogeneity.  

To that end, the first year lag of the energy prices is used as an instrument for the energy prices. Energy prices were 

highly correlated with their lags and the lagged energy prices are not endogenous to the demand of energy. We use a 

two-stage least-squares (2SLS) estimator since it is more efficient than ordinary instrumental variable estimators 

(Cameron and Trivedi 2010). In the first stage we regress the potentially endogenous variable WAPItax on the 

instrument and all exogenous variables. The first stage regression output shows that the instrument (L1.WAPItax) is 

statistically highly significant and its t statistic is relatively high. This confirms the use of our instrument. The second 

stage replaces WAPItax in the structural regression by the predicted values from the first stage regression.   

The results of the second stage regression show that the negative coefficient is larger. This suggests that the negative 

effect of prices on energy consumption was underestimated by 6 percent in the original regression. As the standard 

errors are not substantially larger and the t statistics did not become smaller compared to the original model we can 

conclude that L1.wapitax is a strong instrument. The strong association between WAPItax and its first year lag 

emphasizes this. Furthermore, a Stock-Yogo weak ID F test defines the critical value to be 16.38 at a 10% maximal 

relative bias toleration. Since we have a minimum eigenvalue statistic of 90.86 and an F statistic of 25.77 (due to robust 

standard errors) we exceed the critical value of 16.38 and therefore, can reject the null hypothesis of weak instruments. 

By including exactly one instrument for one potentially endogenous regressor our model is just-identified. This is also 

proved by the Kleibergen-Paap rk LM statistic which shows that our model is identified. Although WAPItax was not 

found to be endogenous, the estimates are still consistent. 

Consequently, by conducting a Two-Stage Least Squares (2SLS) Regression in the second model specification, 

reverse causality can be circumvented. With the inclusion of the instrumental variables the model takes the following 

form: 

𝐸𝑛𝑒𝑟𝑔𝑦𝑖𝑡 = 𝛽0 + 𝛽1𝑋̅𝑖𝑡 + 𝛽2𝑊𝑎𝑝𝑖𝑡𝑎𝑥̂
𝑖𝑡 + 𝛽3𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑖 + 𝛽4𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑖 + 𝛽5𝑐𝑜𝑢𝑛𝑡𝑟𝑦𝑖 + 𝛽6𝑦𝑒𝑎𝑟𝑡 + 𝜀𝑖𝑡 

Where: 

𝑊𝑎𝑝𝑖𝑡𝑎𝑥̂
𝑖𝑡 = 𝛾0 + 𝛾1𝑊𝑎𝑝𝑖𝑡𝑎𝑥𝑖𝑡−1 + 𝛾2𝑒𝑥𝑜𝑔𝑒𝑛𝑜𝑢𝑠 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑜𝑟𝑠𝑖(𝑡) + 𝜀𝑖𝑡   

Where:  

𝛾2 = 0 
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3.1. Data Sources 

All variables, their sources, and basic descriptive statistics are displayed in table 1. The data for energy consumption 

per dwelling in tons of oil equivalent was obtained by the ODYSSEE-MURE website, which represents a collaborative 

effort by several European national energy agencies. The data is normalized to account for varying severity of winter 

weather conditions from year to year. ODYSSEE-MURE further provided the data on home floor space and heating 

degree days (HDD). The latter variable is defined as the distance between Temperature Tm and 18 degrees Celsius 

(weighted by the number of days), if outdoor temperature is 15 degrees or less and zero otherwise:  

 

𝐻𝐷𝐷 = {
(18 °𝐶 −  𝑇𝑚) 𝑥 𝑑𝑎𝑦𝑠, 𝑇𝑚 ≤ 15°

0, 𝑇𝑚 > 15°
 

 

where: 𝑇𝑚 =
∑(𝑇𝑚𝑖𝑛  + 𝑇𝑚𝑎𝑥 / 2) 

#𝑑𝑎𝑦𝑠
    

 

We use both latitude and longitude as additional climate controls, whereby longitude controls for continental 

climates of eastern European countries. These variables were taken from the CIA fact book and verified with additional 

online sources. The median age is available at Eurostat. Home ownership and the fraction of the population living in 

apartments (for each country and year) are also available at Eurostat. However, these two variables do not contain 

values for each year, especially between 2000 and 2006. We graphically inspected the existence of a time trend in each 

country. If the slope is close to zero, it can be assumed that no systematic trend exists and the last available value was 

used for imputation. No more than three years of missing data was filled in in this manner.  

The weighted average price index represents energy prices according to the country specific energy mix as well as 

country specific prices and taxes on each energy carrier. Therefore, the share of the main energy carriers (oil, coal, gas 

and electricity)5 of the country’s energy mix was calculated. Thereafter, prices of each energy carrier for each year were 

deflated to the prices of the year 2010 and denoted in USD. If the prices were only available in other currencies, the 

prices were converted into USD using the exchange rate of the respective year. To have a common base of 

measurement consumption of oil, coal, gas and electricity was converted into the unit tons of oil-equivalents using the 

IEA unit converter. In addition to this, different conversion efficiencies of the energy sources were considered, too. 

Therefore, the prices were multiplied by the energy carrier’s conversion efficiency factor (NCV). Finally, the prices per 

ton of oil equivalent in USD and in NCV of one energy carrier (in one year) were multiplied by the carrier’s share of the 

energy mix. Adding up these prices of each energy carrier yields the country and year specific weighted average price 

index. The data to construct this weighted average price index was drawn from ODYSSEE-MURE, Eurostat, IEA, 

OECD and Statista.6   

Data for GDP per capita and floor area were both drawn from Eurostat. In order to construct the variable 

share_post80 we use data on newly constructed residential buildings in each year and those constructed after 1980 

drawn from the European Commission, ODYSSEE-MURE and Norway Statistical Offices. Table 1 presents the 

descriptive statistics and data sources. 

  

                                                        
5 Some country’s energy mix includes biomass, wood as well as district heating as energy carriers. Due to a lack of data on prices of these energy 

carriers in most of the respective countries, we did not include these energy carriers in the WAPItax calculation. Instead, we subdivided the cumulated 

share of these three energy carries onto the other main energy carriers according to their share. 
6 Missing values were carefully imputed up to three years. If a systematic trend was observable, the value was adapted to the trend otherwise the 

value of the last year available was adopted or the mean between two years’ value was chosen. 
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Table 1: Descriptive statistics 

Variable Obs Mean Std. Dev. Min Max Data Source 

consumption         

(in toe_dw) 

406 1.336 0.516 0.300 3.277 ODYSSEE 

wapitax   444 1368.910 606.238 229.616 3334.713 based on: 

ODYSSEE, IEA, 

OECD, Eurostat, 

Statista 

age 434 39.280 2.344 32.400 45.600 Eurostat 

hdd 435 2942.892 1221.309 306.604 6058.319 ODYSSEE 

latitude 464 49.136 7.239 35.126 61.924 CIA Fact Book 

longitude 464 14.947 13.657 -8.244 60.128 CIA Fact Book 

floor_area 417 90.415 22.081 34.360 145.771 Eurostat 

gdp_capita 435 29430.310 21918.14

0 

1609.28

1 

116612.900 Eurostat 

home-

ownership 

358 75.861 10.545 51.600 97.600 Eurostat 

aprtmt_share 365 38.009 16.860 2.500 69.700 ODYSSEE 

share_post80 464 31.749 10.808 2.030 74.230 based on: European 

Commission, 

ODYSSEE, Norway 

Statistical Offices 

 

Figure 1 depicts the average annual energy consumption per dwelling and country sorted from least consuming to 

most consuming. One can see that southern countries consume, on average, less energy than central or northern 

European countries. The countries with the highest average consumption per dwelling are Luxembourg, Ireland, Finland 

and Norway.  

 

Figure 1: Average annual energy consumption per dwelling and country 

 
 

3.2. Quantitative Results 

Regression results are presented in table 2. Model specification 1 are the results of an LSDV estimation including the 

heteroscedasticity- and autocorrelation robust standard errors, whereas model specification 2 shows the results of the 

2SLS regression using an instrumental variable (IV) for the energy prices. As expected the weighted average price 

index has a negative impact on energy use in both specifications. The 2SLS regression shows that the original model 

underestimated the negative effect of prices on consumption by almost 6%. The climate control variables HDD, 

longitude and latitude are jointly significant in both model specifications. As expected, energy consumption increases 

with more heating degree days and with increasing latitude. Longitude has a positive impact on energy consumption as 

well, which suggests that continental climate has a positive impact on energy consumption.  
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Age is only significant in model 2 and has, unexpectedly, a negative impact; its squared terms are not significant in 

either model. Floor area and GDP per capita and their squared terms are significant in both models. As expected, GDP 

per capita has a positive impact on energy consumption. However, a reverse trend is observable once a certain income is 

reached and less energy is consumed. Equally, increasing floor area leads to higher energy consumption up to the point 

at which floor area exceeds about 100 square meters after which consumption is decreasing again. This is most probably 

due to selective heating of rooms within a large dwelling. The share of owned homes does not affect the dependent 

variable. The tenant-owner-dilemma does not seem to be a major hurdle for the implementation of energy efficiency 

measures. The share of apartments affects energy demand negatively in both models. Similarly, the share of dwellings 

built after 1980 has a negative impact on energy use, albeit only in model 2. 

Overall, our model’s explanatory power is very high with an 𝑅2 of around 0.983. This is due to the fact that the Least 

Squares Dummy Variable Models capture the effects of otherwise omitted variables. Coefficients of year and country 

dummies are not listed in table 2. A negative time trend is observable, which can be explained by technological progress 

as well as increasingly stringent European energy efficiency policies. Figure 2 depicts the country fixed effects sorted 

from least consuming to most consuming country. Country effects which were not significant have a coefficient of 0. 

Germany and France are left out as a control group and therefore have a coefficient of 0 as well. The country which 

displays by far the lowest energy demand is Sweden. The two countries which display the highest energy demand are 

Ireland and Luxembourg. 

Our model results coincide with additional evidence. According to data by the International Energy Agency7, 

Bulgaria’s residential energy consumption per capita is only about one third of Germany’s, whereas Luxembourg 

requires 35% more energy than Germany. A study by the University of Luxembourg (Maas and Zürbes, 2007) also 

concludes that residential energy requirements are 30% to 40% above German and Swiss ones. 

 

Table 2: Regression Results1  

  Model 1 Model 2 

  LSDV IV 

log_wapitax -0.109** -0.163*   

 

(0.043) (0.052) 

log_hdd 0.162* 0.160*   

 

(0.086) (0.06) 

Longitude 0.0102*** 0.0297*** 

 

(0.003) (0) 

Latitude 0.0378** 0.00846*   

 

(0.018) (-0.076) 

Age -0.133 -0.145*   

 

(0.149) (0.08) 

age2 0.00146 0.00161 

 

(0.206) (0.119) 

floor_area 0.0230*** 0.0235*** 

 

(0.008) (0.002) 

floor_area2 -0.000115*** -0.000119*** 

 

(0.007 (0.002) 

gdp_capita (x1,000) 0.00676* 0.00613*   

 

(0.082 (0.083) 

gdp_capita2  -4.86e-11** -4.72e-11**  

 

(3.00E-02) (1.90E-02) 

home_ownership 0.00114 0.00139 

 

(0.424) (0.291) 

apartment_share -0.00751*** -0.00751*** 

 

(0.002) (0.001) 

share_post80_ -0.00348* -0.00299*   

  (0.059) (0.083) 

N 276 275 

R2 0.983 0.983 

1Country and time fixed effects are included in both models. P-values are displayed in parentheses. 

  

                                                        
7 https://www.iea.org/statistics/ (referred 01.02.2018) 
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Figure 2: Country fixed effects after panel regression 

 
 

Finally, figure 3 depicts the residuals of the model by country over time. While the country dummies have removed 

mean deviations from the overall energy demands, these graphs can be interpreted as within-country changes over time 

that are not explained by observable characteristics. The countries which display a clear negative trend over time are 

Latvia and Hungary as well as France, and Luxembourg to a minor extent. 

Falling country specific effects over time are an indicator for the implementation of energy efficiency measures 

within a country. 

 

In our qualitative and exploratory analysis we will focus on the analysis of Swedish energy policy due to its high 

performance. Furthermore, the quantitative analysis showed that Finland has consumed on average less energy than we 

would have expected given the country specific conditions. However, compared to Sweden, Finland’s energy 

consumption savings are not as high. Being geographic neighbors, Finland and Sweden are situated in a similar climatic 

and cultural zone and are thus, ideally suited for a direct policy comparison. Considering the similarities of the both 

countries, begs the question, what explains the difference in energy efficiency between both countries. Therefore, 

Finland will be analyzed additionally. We will, furthermore, analyze Ireland because of its relatively high energy 

demand as well as Latvia and Hungary due to their decreasing trend found in the plotted residuals.  
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Figure 3: Residuals after panel regression by country over time 
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Figure 3 (continued): Residuals after panel regression by country over time 

 

4. Exploratory Policy Analysis 

Qualitative methods are known to generate more detailed information. Therefore we use qualitative methods in order 

to explore the countries’ energy policies. The qualitative analysis is based on semi-structured in depth expert interviews 

and extended by an examination of original policy documents as well as research articles, as table A in the appendix 

summarizes. The gathered material was evaluated with regard to our research question, i.e. are there any distinct 

policies that may explain the country’s low energy consumption level. This analysis is meant to be explorative, whereby 

we aim to formulate plausible hypotheses based upon qualitative evidence, not to test them. 

4.1. Sweden 

Sweden is an interesting case for our policy analysis because once we take all observable characteristics into 

account, the Swedish residential sector uses the least amount of energy per dwelling. Descriptive data by the Swedish 

Energy Agency display a falling total consumption between 1995 and 2008 (see figure 4). According to the conducted 

interviews, three characteristics of Swedish energy policy turn out to be noteworthy: regulatory energy standards for 

new buildings, the energy and carbon-taxation systems as well as district heating. 

4.1.1. Energy regulation standards for new buildings 

Swedish energy regulation is quite rigorous, compared with other European countries (see table 3). This is not only 

the case for the timespan of our quantitative analysis (2000-2015). The regulation from 1978 (SBN 75, Supplement 1) 

comprises energy requirements that are equal to, or even stricter than those in Germany in 2014 (ENEV 2014). In the 

meantime, the computational basis for u-values has been altered (BFS 1993; BFS 2002:6) and standards were tightened 

in 2007 (compare BFS 2006:12 of 2007 as well as BFS 2008:20 BBR 16). 2007’s tightening of building part regulation 

was accompanied by the introduction of a preliminary 2-year license and periodical consumption metering. In the case 

of non-compliance, owners are fined and buildings have to be modified.   

Figure 4 depicts Swedish total residential energy consumption over time. As the regulations have been strict since 

the 1970s and as they have been tightened further in 2007, they cannot be regarded as the main explanatory factor for 

the decline of Swedish energy consumption between 1995 and 2007 without further qualification. If we put aside the oil 

price shocks of the 1970s, we can observe that energy demand is on decline since 1995, or, perhaps 1990, whereas it 

showed no further reaction to the tightening regulation in 2007. 

Furthermore, tighter building part regulations may not have been introduced for environmental purposes. They 

could, perhaps, simply be explained by utility maximizing decisions in colder climate zones. If house owners invest 

without being forced by regulation, in order to gain more energy efficiency, a law that codifies this practice will not 
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encounter much opposition. Legal codification, in this case, would only translate a common practice into formal law. 

Thus, the causal relationship is not necessarily running from law to energy consumption.  

4.1.2. Energy and Carbon Taxation 

Figure 4 shows that a major proportion of energy conservation was achieved from 1995 on and this decline cannot be 

explained by regulatory reforms or the tightening of building part regulation in 2007 because it was introduced after the 

major part of conservation had already been achieved. Instead, as we found out in the expert interviews the introduction, 

and more importantly, the upward adjustment of the carbon-tax play a significant role. In 1991, Sweden was one of the 

first countries to introduce a carbon tax, right after Finland and Poland did so in 1990. In current prices the tax rate was 

at 20 €/ton of CO₂, but in subsequent years it was subject to continuous increases. The highest raise occurred in between 

2000 and 2004 where the price per ton grew up to 100€. The energy- and electricity- as well as the carbon-tax revenues 

are also shown in figure 4. The continuous increase of the electricity tax revenue after 1993 and the increase of the 

carbon tax rate after 2000 mirror the declining energy consumption trend. The reduction of fuel energy taxation is 

strongly overcompensated by the increase of electricity and carbon taxation. 

Based on our findings we hypothesize that the carbon tax had two major effects: (1) a general reduction in energy 

consumption and (2) changes of the energy-mix. Especially intensified use of heat pumps (figure 5) and the reduction of 

oil consumption (figure 6) are presumably caused by the tax increase, which is supported by their co-varying time 

trends. Interestingly, the spread of heat pumps caused only a very slight increase in electricity consumption after the 

year 2000. Furthermore, the oil consumption reduction is partly compensated by an increase in biomass consumption. 

The actual increase in biomass consumption is underestimated in figure 6, as a large portion of district heat (which is 

listed separately) is fueled by biomass as well. 

 

Figure 4: Total residential energy consumption (1970-2013, in TWh) and environmental tax revenues in Sweden 

(1993-2013, in Mio. SEK) 

 
Source: Swedish Energy Agency, Statistics Sweden 
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Figure 5: Sales of heatpumps in Sweden between 1982 and 2016 

 
Source: Svenska Kyl & Värmepump Föreningen 

 

Figure 6: Energy consumption (households) by energy carrier (Sweden, in TWh) 

 
Source: Swedish Energy Agency 

4.1.3. District Heating 

District heating was mentioned by our interviewees as another factor having improved energy efficiency in Swedish 

residential buildings. As a reaction to the oil price shocks in the 1970s, a political promotion of municipal district 

heating occurred. District heating in Scandinavian countries is relatively energy efficient (Joelsson and Gustavsson, 

2009). Due to high energy taxation, the district heat production was incrementally adjusted to include a greater share of 

renewable energies instead of fossil fuels since the 1990s, which may have been partly caused by higher fossil fuel 

prices. District heating had a market share of around 55% in 2014 (Werner, 2017).8   

 

Hypothesis 1:  Strict regulations are effective in lowering energy consumption. 

Hypothesis 2: Carbon and energy taxes are effective in improving energy efficiency by lowering 

consumption and causing fuel substitution. 

Hypothesis 3:  The prevalence of relatively efficient district heat systems has caused lower energy use. 

                                                        
8 However, district heating is not per se an energy efficient energy carrier. In cases in which pipes are outdated and badly insulated districting 

heating can lead to an enormous loss of energy.” 
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Table 3: Building part regulation across chosen countries (u-values)2 

 

Finland Germany Sweden Latvia Hungary 

Year 1978 1985 2010 1977 2014 1978 2008 < 1991 1991 2003 < 1991 1991 2006 

Wall 0,29 - 0,35 0,28 0,17 1,45 - 1,75 0,28 0,25 - 0,30 0,18 1.1 0.36 0.25-0.3 1.2 0.7 0.45 

Roof 0,23 - 0,29 0,22 0,09 0,45 0,2 0,17 - 0,20 0,13 1.3 0.31 0.2 -0.25 0.9 0.4 0.25 

Windows 2,1 - 3,1 2,1 - 3,1 1,00 1,6 - 3,5 1,3 1,0 - 2,0 1,3 5.9 2.0 1.8  - 3.00 1.6 

Ground Floor 0,23 - 0,4 0,22 - 0,36 0,16 0,9 0,35 0,17 - 0,30 0,15   0.25  - 0.85 0.25 

2The table displays u-values: 
𝑊

𝑚2𝐾
 

Sources:  Finland – ODYSSEE-Mure Policy Data Base 

  Germany - Wärmeschutzverordnung 1977, nichtamtliche Fassung S. 9-12; Energieeinsparverordnung 2014 nichtamtliche Fassung S. 41f. 

  Sweden - SBN 1975 Supplement 1 S. 17, BFS 2008:20 BBR 16 S. 10. 

  Latvia – Cabinet Regulation No 495 Adopted 27 November 2001, “Implementation of the EPBD in Latvia Status in November 2010”  

    by Dzintars Grasmanis 

  Hungary - before 1991: ME-30-65; 1991: BS-04-140/2-79; BS-04-140 2-85; DIN-04-140-2; 2006: 7/2006. (V. 24.) TNM  
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4.2. Finland 

Finnish residential energy consumption is higher than the one in Sweden in both descriptive statistics, as well as in 

our regression analysis (see figure 2). Descriptive statistics by the IEA (figure 7) as well as the residuals in our 

quantitative analysis above (figure 3) show hardly any change in total residential energy consumption over time. In the 

following paragraph we will outline the reasons for Finland’s lower, yet, by European comparison still quite 

satisfactory, energy performance. 

 

Figure 7: Total Residential Consumption Finland 1990-2015 (in ktoe) 

 
Source: International Energy Agency (IEA) 

 

Besides strict regulatory building part energy efficiency regulations (see table 3), Finnish energy efficiency policy 

incorporates a range of economic incentives such as energy audits for households or industrial production as well as 

energy grants for households in order to promote energy efficiency in the old building stock. Like Sweden, Finland also 

makes extensive use of district heating which has a market share of about 45% (Sweden: 55%, see above; Vainio et. al. 

2015). Alternatively, country statistics provided by Euroheat & Power (2013) estimate that about 50% and 52% of all 

customers are served by district heat in Finland and Sweden respectively. The fossil fuel intensity within the district 

heating energy mix and the overall residential energy mix has been declining over the last decade. It is being mostly 

substituted by renewable and carbon neutral energy sources.  

Thus, Finland makes use of a policy mix that displays remarkable similarities to Sweden’s regarding regulations, use 

of subsidies, and the prevalence of district heating. Therefore, it seems appropriate to expect Finland’s residential 

energy conservation level to be roughly similar to the one in Sweden. Since this is not the case, the discrepancy in 

energy efficiency performance calls for another explanation. 

The expert interviews and our analysis of policies suggests that the main difference between the two countries 

energy policy lies in the more stringent carbon taxation in Sweden.  

Being the first country to do so, Finland enacted a carbon tax in 1990. This tax has been subject to major reforms 

(e.g. in 1997, 2007, 2011) of which the merging with the energy tax is of particular importance. Since 1997 the carbon 

tax also applies to traffic and heating fuels. 

In Finland, different energy carriers are subject to different carbon-tax rates, either expressed in c/l (light/heavy 

heating fuels) or c/kg (coal). Heavy fuel oil and coal make up only an insignificantly small share of the heating energy 

mix, whereas light fuel oil is the most important fossil energy carrier after wood. If we project the 2015 tax rate for light 

fuel oil (9,94c/l) to tons of CO2 (Statistics Finland, 2017 ), it can be concluded that the current carbon tax rate in 

Finland is set at around €30 per ton of CO₂ for light fuel oil. This is, as a World Bank study shows, rather high in 

international comparison, although the Swedish carbon tax rate is much higher (World Bank, 2015: 15). Lower tax rates 

are imposed on natural gas, certain biofuels, and peat. The relatively lower tax rate, can be regarded as the main factor 

that distinguishes Finland from Sweden. 

In summary, both Finland and Sweden display energy performance levels above what we would predict based on 

observable characteristics. Their relative position can be explained by tight regulatory standards. Finally, more stringent 

carbon-taxation seems to explain Sweden’s more advanced position when we compare the two. 

 

Hypothesis 4:  The effectiveness of a carbon tax is dependent on its magnitude. A tax of 30 € and a  

tax of 100 € per ton of CO₂ cause markedly different reductions in energy consumption. 
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4.3. Ireland 

In comparison to Sweden and Finland, Ireland is underperforming when it comes to energy conservation in the 

residential sector. However, the descriptive data shows a 25% decline in residential energy use between 2000 and 2015. 

Thus, while Ireland displays poor energy performance on average, there have been considerable improvements during 

the last two decades. A rough calculation based on our regression coefficients suggests that at least one quarter of the 

overall decline in energy use between 2000 and 2015 can be traced back to the construction of new buildings.9 The 

single most important policy measure seems to be the building part regulation in Ireland, which is currently 

comparatively strict. 

The building part regulation was drastically tightened between 2000 and 2014. Table 4 shows its development over 

time. It applies to new buildings as well as to renovation for existent buildings, although in the former case, it is more 

demanding. Between 2000 and 2015, the building stock grew from 1.2 Mio. to 1.7 Mio. permanently occupied 

buildings. Therefore, a large portion of buildings is subject to the tightened regulations of 2002 and 2007. The average 

area per building grew during that period, but energy demand per dwelling declined (Irish Energy Agency, 2016). The 

Irish Energy Agency explains this improvement by the increasing spread of central heating which is more energy 

efficient than space heating systems. 

 

Table 4: Building part regulations (u-values) for existent and new buildings in Ireland3 

 New Buildings    

Year 1991 1997 2002 2007 2011 2017 

Wall 0,45 - 0,6 0,45 - 0,6 0,27 0,27 0,21 0,21 

Roof 0,25 - 0,35 0,25 - 0,35 0,16 - 0,22 0,16 - 0,22 0,16 - 0,2 0,16 - 0,2 

Windows -- 3,30 2,2 2 1,60 1,60 

Ground  

     Floor 

0,45 - 0,6 0,45 0,25 0,25 0,21 0,21 

Source: BRTGDL4,     

    1991, p. 8 

BRTGDL,  

    1997, p. 8 

BRTGDL,  

    2002  

    (Reprint  

    2005) , p. 9 

BRTGDL,  

     2007 

    (Reprint  

     2008), p.17 

BRTGDL, 

     2011, p.17 

BRTGDL,  

     2017, p.18 

 Existent Buildings / Renovation    

Year 1991 1997 2002 2007 2011 2017 

Wall 0,60 0,45 - 0,6 0,6 0,27 0,35 - 0,55 0,35 - 0,55 

Roof 0,35 - 0,6 0,35 - 0,6 0,35 0,16 - 0,22 0,16 - 0,25 0,16 - 0,25 

Windows -- 3,30 2,2 2 1,6 1,6 

Ground  

     Floor 

-- -- -- 0,25 0,45 0,45 

Source: BRTGDL,  

    1991, p. 8 

BRTGDL,  

    1997, p. 8  

BRTGDL, 

    2002  

    (Reprint  

    2005) , p.9 

BRTGDL,  

     2007  

    (Reprint  

     2008), p. 

28 

BRTGDL,  

     2011, p. 26 

BRTGDL,  

     2017, p. 27 

3 All values are u-values. The unit is 
𝑊

𝑚2𝐾
  

4 BRTGDL = Building Regulations Technical Guidance Document L 

 

Carbon-taxation was introduced for heating and motor fuels in 2010. Its original rate was set at 15€ per ton of CO2, 

which was raised to 20€ per ton in 2012. Descriptive statistics show a marked decline in total energy use after 2010 

despite the general increase in living space (Irish Energy Authority, 2016, 65-66). While this may indicate an impact of 

carbon-taxation, the intervention is too recent in order to draw more definite conclusions.  

The case of Ireland illustrates that hard building regulations are only effective in the long run. Because of the 

building boom, about a third of the Irish building stock was built after the year 2000, thereby being subject to current 

energy efficiency standards. Nevertheless, the average Irish energy consumption level is still higher than in most 

European countries.   

 Hypothesis 5:  Stringent building regulations are only effective in the long run.  

                                                        
9 We assume the share of new buildings to be 33%, whereas the coefficient for the variable ‘post_80’ is 0.0035. The latter number signifies the 

reduction in energy consumption (measured in toe) caused by a 1 percent increase of new buildings. Multiplying 0.0035% with 33 yields 0.12, which 

represents about a quarter of the total reduction of the Irish energy consumption. 
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4.4. Latvia and Hungary 

Our quantitative analysis has shown that among all countries Latvia and Hungary both occupy middle positions with 

regard to their energy consumption level. Yet, both countries show the strongest improvements in energy efficiency 

over the years. The residential energy consumption pattern in both countries moves almost parallel. Overall, Latvia’s as 

well as Hungary’s total residential energy consumption fell between 1990 and 2016 (figure 8). In our regression 

analysis above, after having controlled for a number of key observable characteristics, we can see that energy efficiency 

has improved in the years from 2000 onwards (see figure 3).  

From 1980-1991 buildings in Latvia and Hungary were built according to USSR Standards (for u-values see table 3). 

After their independence, the Ministry of Architecture and Construction imposed considerably stricter energy efficiency 

standards in Latvia in 1991 which were again tightened by the Cabinet Regulation No 495 (LBN 002-01). The latter 

regulation came into force in 2003 and set construction standards for new buildings, as well as reconstructed and 

renovated buildings. The u-values from 2003 are not as strict as in Sweden or Finland but roughly correspond to 

standards in Germany in 2014. Similarly, building regulation in Hungary was tightened in 1991, and again in 2006. 

Hungary’s regulatory demands are slightly weaker than the ones in Latvia. 

 

Figure 8: Residential Energy Consumption in Latvia and Hungary (1990-2016, Index: 1990=100) 

 
Source: Eurostat 

As figure 8 depicts, total energy consumption in Latvia and Hungary already had a decreasing trend in the 1990s 

which could be due to the introduction of stricter standards in both countries at that time in 1991 (see table 3). However, 

construction activity was low in the 1990s (see figure 9) and thereby regulatory building standards do not translate into 

improved efficiency performance. Instead there was a massive post-socialist GDP slump per capita in the early 1990s 

followed by a gradual recovery. Thus, the reduction in energy consumption can most probably be explained by low 

incomes.  

  



 Energy Efficiency in European Residential Buildings  16 

Figure 9: Total number of new residential dwellings in Latvia and Hungary over time  

(Index: 2010=100) 

 

Source: Eurostat, Centralas statistikas parvaldes datubazes 

 

In the year 2003, when construction standards LBN 002-01 came into force in Latvia, the number of new dwellings 

skyrocketed till the financial crisis in 2008 (figure 9). The sudden increase in construction activity correlates with the 

steady and strong GDP growth starting in 2003. Similarly, Hungary experienced a building boom starting in 1999 as 

GDP per capita increased continuously. The building boom coincides with a temporary increase in energy demand, 

which plateaus in 2004 and then gradually declines. Interestingly, energy consumption seems to decline in both 

countries around 7 years after the country’s tighter regulatory standards were implemented.  

In conclusion, similar to Ireland, tighter building regulations in conjunction with increased building activity are 

likely to explain the falling energy consumption levels in Latvia and Hungary over time (see figure 8). However the 

effects are lagged by around 7 years after the country’s implementation of tighter building standards. 

 

Hypothesis 6:  Tighter regulations are most effective when accompanied by high construction activities in the 

residential sector. 

 

5. Conclusion and Policy Implications 

In this paper, we examine the effectiveness of environmental policies in reducing residential energy consumption. In 

contrast to former studies, we use an exploratory approach in order to find out which policies explain differences in 

energy efficiency between countries and to generate hypotheses.  

In our quantitative analysis we regress the mean annual energy use per dwelling in 29 European countries on a 

number of observable characteristics. We then plot country dummy coefficients in order to identify countries that 

exhibit inexplicably low or high energy consumption. Sweden and Finland stand out because of their low energy 

consumption, whereas Ireland can be found on the other end of the spectrum. We also plot residuals by country over 

time in order to spot improvements in energy efficiency. Latvia and Hungary display a falling time trend. We then 

analyze these countries’ policy environments qualitatively.  

We find that building part regulations are an effective policy instrument for reducing the consumption of energy in 

residential buildings. However, the impact of regulatory standards becomes only visible over longer time periods, as for 

example in Sweden and Finland, unless the tightened regulation is accompanied by a building boom, as for example in 

Ireland, Latvia and Hungary. While regulations have markedly contributed to the reduction of overall energy 

consumption in Latvia, Hungary and Ireland, these three countries are still positioned in the lower half of our energy 

performance ranking, which, again, speaks to the longer time periods required for regulation to affect energy 

performance.  

Our results also point toward an additional policy instrument: carbon-taxation. As regulatory standards as well as 

other factors (such as the performance and the share of district heating) are almost identical in the case of Sweden and 

Finland, another explanation is required in order to understand the relatively advanced performance of Sweden in 
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comparison to Finland when it comes to energy consumption. We argue that this crucial difference can be found in high 

carbon-taxation rates that have existed in Sweden. The decline in the energy consumption pattern over time is consistent 

with such an explanation as the increases in taxation coincide with the decline but cannot be explained by the timing of 

building code reforms. In this regard the scope of carbon taxation plays a crucial role for its effectiveness. A carbon tax 

of only 4,50 € per ton of CO2 as in Latvia or 30 € per ton of CO2 in Finland cannot show the far-reaching effects as 

observed in Sweden (with a carbon tax of 120 € per ton of CO2).  

From our research, the following policy implications and hypotheses can be derived, which should be tested in future 

studies:  

1. Strict regulations are effective in lowering energy consumption. 

2. Carbon and energy taxes are highly effective in improving energy efficiency. 

3.  The prevalence of relatively efficient district heat systems has caused lower energy use. 

4. The effectiveness of carbon taxation is highly dependent on its scope. A tax of 30 € and a tax of 120  

  per ton of CO2 cause markedly different reductions in energy consumption.  

5. Stringent building regulations are only effective in the long run.  

6. Tighter regulations are most effective when followed by high construction activities in the residential  

 sector. 

There are certain limitations to our approach. Most importantly, we have focused on generating hypotheses, not 

hypothesis testing. While our qualitative analysis leads us to argue that carbon-taxation can be an effective policy 

instrument for reducing energy consumption, quantitative efforts should test this assertion. As more and more countries 

introduce carbon-taxes, more data for such an endeavor will be available in the near future. In this regard, Lin and Li 

(2011) have already provided a valuable first contribution by examining the impact of carbon-taxation on overall CO2-

emissions. Future studies should be careful to include the varying tax rates as our results indicate that the difference 

between a tax of 30 € and a tax of 120 € per ton of CO2 causes markedly different outcomes. 

Furthermore, the use of the country specific effects as an energy policy indicator has two major limitations, one of 

which is the omitted variable bias. As above mentioned, the country dummies absorb the effects of omitted variables. 

Moreover, the country dummies could include cultural factors or habits in what concerns energy consumption. Further 

research could take upon these limitations. 

Finally, while we cautiously suggest that both regulatory building standards as well as carbon-taxation can be 

effective policy approaches for reducing energy consumption, we have not addressed the cost-benefit aspects of these 

policies. There are strong theoretic reasons to believe that a taxation scheme will cause market actors to discover the 

most cost-efficient means of lowering CO2-emissions. If the cost of CO2-reduction exceeds a certain level, the 

likelihood of losing public support for further climate policies will increase, thereby jeopardizing global efforts to 

mitigating climate risks. 

However, since we used an exploratory analysis we were able to shed some light on energy policies which were 

earlier neglected due to homogenization by quantification of energy policies. Therefore, our analysis provides useful 

policy implications for further enhancement of energy efficiency policies in the European Union 
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Appendix 

A. Overview on documents and interviewees 

 

Country Policy documents and interviews 

Sweden Boverket (National Housing Board) building part regulation: www.boverket.de 

SBN 1975 Supplement 1, BFS 1993; BFS 2002:6; BFS 2008:20 

Economist: 1 

Swedish Energy Agency: 2 

Boverket: 1 

Swedish Green Building Council: 1 

Ireland 

 

Building Regulations Technical Guidance Document L 1991, 1997, 2002 (Reprint 

2005), 2007 (Reprint 2008), 2011 
Economists: 1 

Finland 

 

ODYSSEE-Mure Policy Database 

Ministry of the Environment: 1 

Energy Authority: 1 

Hungary ME-30-65; BS-04-140/2-79; BS-04-140 2-85; DIN-04-140-2; 7/2006. (V. 24.) 

TNM 

Latvia Cabinet Regulation No 495 (Regulations Regarding Latvian Construction 

Standard LBN 002-01 Thermotechnics of Building Envelopes 

Ministry of Finance Republic of Latvia 2007: Operational Programme 

“Infrastructure and Services” (3.5.2 Energy) 

Energy Efficiency Law 

Energy Law  

Centralas statistikas parvaldes datubazes 

Other 

 

Germany – Wärmeschutzverordnung (WSchVO) 1977; 

Energieeinsparverordnung (EnEV) 2014 
UK – National Audit Office, 2016. 

 

 


